On Symplectic and Non–symplectic Automorphisms of K3 Surfaces
نویسندگان
چکیده
In this paper we investigate when the generic member of a family of complex K3 surfaces admitting a non–symplectic automorphism of finite order admits also a symplectic automorphism of the same order. We give a complete answer to this question if the order of the automorphism is a prime number and we provide several examples and partial results otherwise. Moreover we prove that, under certain conditions, a K3 surface admitting a non–symplectic automorphism of prime odd order, p, also admits a non–symplectic automorphism of order 2p. This generalizes a previous result by J. Dillies for p = 3.
منابع مشابه
The Dihedral Group D5 as Group of Symplectic Automorphisms on K3 Surfaces
We prove that if a K3 surface X admits Z/5Z as group of symplectic automorphisms, then it actually admits D5 as group of symplectic automorphisms. The orthogonal complement to the D5-invariants in the second cohomology group of X is a rank 16 lattice, L. It is known that L does not depend on X: we prove that it is isometric to a lattice recently described by R. L. Griess Jr. and C. H. Lam. We a...
متن کاملar X iv : 0 80 7 . 37 08 v 2 [ m at h . A G ] 4 S ep 2 00 8 K 3 surfaces with non - symplectic automorphisms of 2 - power order
This paper concerns complex algebraic K3 surfaces with an automorphism which acts trivially on the Néron-Severi group. Complementing a result by Vorontsov and Kondō, we determine those K3 surfaces where the order of the automorphism is a 2-power and equals the rank of the transcendental lattice. We also study the arithmetic of these K3 surfaces and comment on mirror symmetry.
متن کاملMaximal Subgroups of the Mathieu Group M23 and Symplectic Automorphisms of Supersingular K3 Surfaces
We show that the Mathieu groups M22 and M11 can act on the supersingular K3 surface with Artin invariant 1 in characteristic 11 as symplectic automorphisms. More generally we show that all maximal subgroups of the Mathieu group M23 with three orbits on 24 letters act on a supersingular K3 surface with Artin invariant 1 in a suitable characteristic.
متن کاملElliptic K3 Surfaces with Abelian and Dihedral Groups of Symplectic Automorphisms
We analyze K3 surfaces admitting an elliptic fibration E and a finite group G of symplectic automorphisms preserving this elliptic fibration. We construct the quotient elliptic fibration E/G comparing its properties to the ones of E. We show that if E admits an n-torsion section, its quotient by the group of automorphisms induced by this section admits again an n-torsion section. Considering au...
متن کاملSymplectic Automorphisms of Prime Order on K3 Surfaces
We study algebraic K3 surfaces (defined over the complex number field) with a symplectic automorphism of prime order. In particular we consider the action of the automorphism on the second cohomology with integer coefficients (by a result of Nikulin this action is independent on the choice of the K3 surface). With the help of elliptic fibrations we determine the invariant sublattice and its per...
متن کامل